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Stochastic Control Design MVC

Minimum-Variance Control

Consider the ARMAX model:

A(q)y(t) = B(q)u(t)+C(q)e(t)

with
A(q) = qn +a1qn−1 + . . .an

B(q) = b0qn−d +b1qn−d−1 + . . .bn−d

C(q) = qn + c1qn−1 + . . .cn

Note that d = degA−degB is the time delay of the process

As usual, e(t) is assumed to be zero-mean white noise
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Stochastic Control Design MVC

Minimum-Variance Control

Omitting the argument q in the various polynomials, the output at time
t+d can be written as:

y(t+d) =
B
A

u(t+d)+
C
A

e(t+d)

The second term in the right-hand side of the above equation consists of
noise terms which at time t are future and unknown, and of some past
and present terms.

Because the noise e(t) is white, those future noise terms cannot be
predicted, i.e. E[e(t+ j)] = 0 for j > 0.
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Stochastic Control Design MVC

Minimum-Variance Control

We can express the noise filter C/A by its impulse response model, and
separate the unknown future terms from the known past and present ones:

C
A

e(t+d) = e(t+d)+ f1 e(t+d−1)+ . . .+ fd−1 e(t+1)︸ ︷︷ ︸
future unknown terms

+ fd e(t)+ fd+1 e(t−1)+ · · ·︸ ︷︷ ︸
present and past terms
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Stochastic Control Design MVC

Minimum-Variance Control

This can be rewritten as

C
A

qd−1 e(t+1) = Fe(t+1)+
qG
A

e(t)

i.e. F and G satisfy the following Diophantine equation with degF = d−1
and degG = n−1:

Diophantine Equation

qd−1C(q) = A(q)F(q)+G(q)

With that the predictor becomes

y(t+d) =
B
A

u(t+d)+(Fq−d+1 +
G
A

q−d+1)e(t+d)
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Stochastic Control Design MVC

Minimum-Variance Control

Reconstructing the noise sequence e(t) as e(t) = [Ay(t)−Bu]/C we can write the
d-steps ahead predictor

y(t+d) =
B
A

u(t+d)+
qG
A

e(t)+Fe(t+1)

as

y(t+d) =
B
A

u(t+d)+
qG
A

Ay(t)−Bu(t)
C

+Fe(t+1)

or

y(t+d) =
qG
C

y(t)+
B(Cqd−qG)

AC
u(t)+Fe(t+1)

with qd−1C = AF+G this becomes

y(t+d) =
qG
C

y(t)+
qBF

C
u(t)+F e(t+1)
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Stochastic Control Design MVC

Minimum-Variance Control

The predictor can then be written as

y(t+d) = ŷ(t+d|t)+Fe(t+1)

If yr denotes the setpoint, then the minimum variance controller is obtained by
setting

ŷ(t+d|t) = yr =
qG
C

y(t)+
qBF

C
u(t)

thus giving the controller:

MVC Controller

u(t) =
C(q)

B(q)F(q)
yr−

G(q)
B(q)F(q)

y(t)
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Stochastic Control Design MVC

Minimum-Variance Control

Note that when minimum-variance control is used, then

y(t+d) = Fe(t+1)
= e(t+d)+ f1e(t+d−1)+ . . .

+fd−1e(t+1)

i.e.

The output is a moving-average process of order d−1.

A characteristic of such a process is that its autocorrelation function
vanishes after d lags.

This is an important feature of minimum-variance control, which will
prove very useful when testing the optimality of a stochastic control
scheme.
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Stochastic Control Design MVC

Minimum-Variance Control

Using this controller gives for the closed-loop system:

BCqd−1y(t) = BCyr +BCFe(t)

Multiplying both sides of the Diophantine equation by B(q), we can
interpret the minimum-variance controller as a pole-placement controller.

qd−1C(q)B(q) = A(q)F(q)B(q)+G(q)B(q)

The MVC can then be interpreted as a pole placement controller with
B+ = B, Am = qd−1 and A0 = C
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Stochastic Control Design MVC

Minimum-Variance Control

Like the Dahlin controller, the minimum-variance controller cancels all
process zeros, thus no zeros are allowed outside the unit circle, and
poorly damped zeros will cause ringing.

If the B-polynomial is factored as

B(q) = B+(q)B−(q)

with B monic and where all zeros of B+(q) are within the unit circle, and
those of B−(q) are on or outside the unit circle.
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Stochastic Control Design MVC

Minimum-Variance Control

The minimum-variance control law is then given by:

u(t) =− G(q)
B+(q)F(q)

y(t)

with degF(q) = d+degB−−1, degG(q) = n−1 and

qd−1C(q)B−∗(q) = A(q)F(q)+B−(q)G(q)

where B−∗(q) = qdegB−B−(q−1) projects the unstable zeros inside the unit
circle.
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Stochastic Control Design MVC

Minimum-Variance Control

Major drawbacks of minimum-variance control
Hyperactivity
Lack of tuning parameter

Modifications
Moving-average controller
Input weighting

J = E[y2 +ρu2]

J = E[y2 +ρ∆u2]
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Stochastic Control Design Moving Average Control

Moving-Average Control

The moving-average controller can be seen as a simplification of the above
scheme, where instead of projecting the unstable zeros inside the unit circle
by using the reciprocal of B before cancelling them, we simply add an
equivalent number of poles at the origin. The Diophantine equation is then

qh−1C(q) = A(q)F(q)+B−(q)G(q)

or
qh−1B+(q)C(q) = A(q)B+(q)F(q)+B(q)G(q)

where h = degA−degB+ and degF = h−1.
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Stochastic Control Design Moving Average Control

Moving-Average Control

The control law is
u(t) =− G

B+F
y(t)

The closed-loop system is

y(t) =
CB+F

qh−1B+C
e(t)

= q−h+1Fe(t)

= (1+ f1q−1 + . . .+ fh−1q−h+1)e(t)

The controlled output is then a moving-average of order h−1

If h = d then minimum-variance control is obtained.

If hdegA = n, then no zeros are cancelled.
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Stochastic Control Design LQG

Linear Quadratic Control

Theorem (LQG Control)
Consider the process model

A(q)y(t) = B(q)u(t)+C(q)e(t)

and the loss function
J = E{(y(t)− yr(t))2 +ρu2(t)}

Assume that there is no common factor to all three polynomials A(q), B(q) and C(q). The optimal control law that minimizes J is given by

R(q)u(t) =−S(q)y(t)+T(q)yr(t)

where T(q) = t0C(q) with t0 = P(1)/B(1) and R and S satisfy the Diophantine equation

A(q)R(q)+B(q)S(q) = P(q)C(q)

where the monic and stable P(q) is obtained from the spectral factorization

rP(q)P(q−1) = ρA(q)A(q−1)+B(q)B(q−1)

For proof, see Aström and Wittenmark, Computer Controlled Systems
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Stochastic Control Design LQG

Linear Quadratic Control

The LQG controller is obtained as solution of the Diophantine equation

P(q)C(q) = A(q)R(q)+B(q)S(q)

The closed-loop characteristic polynomial is P(q)C(q) where the stable
polynomial P(q) is obtained from the following spectral factorization:

rP(q)P(q−1) = ρA(q)A(q−1)+B(q)B(q−1)
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Stochastic Control Design LQG

Linear Quadratic Control

If A and B have a stable common factor A2, i.e. A = A1A2 and B = B1A2
then P can be written as P = P1A2 where P1 satisfies

rP1(q)P1(q−1) = ρA1(q)A1(q−1)+B1(q)B1(q−1)

and
P = P1A2

The Diophantine equation to be solved then becomes

P1(q)C(q) = A1(q)R(q)+B1(q)S(q)

A2 contains the uncontrollable modes
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Stochastic Control Design LQG

Linear Quadratic Control

More complicated when some uncontrollable modes are unstable, i.e.
when A2(q) = A+

2 (q)A
−
2 (q)

With a controller u(t) =−S(q)/R(q)y(t) the closed-loop input and
output are described by

y(t) =
R(q)C(q)

A(q)R(q)+B(q)S(q)
e(t)

u(t) =
S(q)C(q)

A(q)R(q)+B(q)S(q)
e(t)

The output y will be bounded if R(q) contains A−2 (q)

The input u will be bounded if s(q) contains A−2 (q)

Because R and S are co-prime, only y will be bounded by making sure
that R(q) contains A−2 (q) as a factor. This is the internal model principle.

Guy Dumont (UBC EECE) EECE 574 - Adaptive Control January 2013 19 / 46



Indirect Stochastic STC

Indirect MV-STR

Straightforward design

Use e.g. AML to obtain estimates Â, B̂ and Ĉ

Compute zeros of Ĉ and project unstable ones inside the unit circle

Factor B̂ as B̂ = B̂+B̂−

Eliminate common factors between Â and B̂−

Solve the Diophantine equation

qd−1Ĉ(q)B̂−∗(q) = Â(q)F(q)+ B̂−(q)G(q)

where degF(q) = d+deg B̂−−1, degG(q) = n−1 and
B̂−∗(q) = qdeg B̂−B̂−(q−1)

Apply the minimum variance controller

u(t) =− G(q)
B̂+(q)F(q)

y(t)
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Indirect Stochastic STC

Indirect MV-STR Example

Consider the system

y(t+1)+ay(t) = bu(t)+ e(t+1)+ ce(t)

with a =−0.9, b = 3, and c =−0.3.

The minimum variance controller is

u(t) =
a− c

b
y(t) =−s0y(t) =−0.2y(t)

Initial estimates â(0) = ĉ(0) = 0, b̂(0) = 1
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Indirect Stochastic STC

Indirect MV-STR Example

Figure: Indirect MV-STR
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Indirect Stochastic STC

Indirect LQG-STR

Estimate Â, B̂ and Ĉ using e.g. AML

Compute zeros of Ĉ and project unstable ones inside the unit circle

Eliminate common factors between Â, B̂ and Ĉ

Find the common factor A2 between Â and B̂

Given ρ , solve the appropriate spectral factorization problem

Solve the appropriate Diophantine equation

Implement control law with computed R, S, and T

The solution of the spectral factorization problem is the major computation in
the LQG STR. It is crucial to use a method that garantees a stable P.
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Direct STC

Direct MV-STR Example

Consider again the system

y(t+1)+ay(t) = bu(t)+ e(t+1)+ ce(t)

with a =−0.9, b = 3, and c =−0.3.
The minimum variance controller is

u(t) =
a− c

b
y(t) =−s0y(t) =−0.2y(t)

Consider a direct STR based on the model

y(t+1) = r0u(t)+ s0y(t)

for which the control law is

u(t) =− ŝ0

r̂0
y(t)

with r̂0 = 1 and ŝ0 is estimated with a simple RLS.
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Direct STC

Direct MV-STR Example

Figure: Indirect MV-STR
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Direct STC

Direct Stochastic Self-Tuning Controllers

The previous indirect scheme involves many calculations at each step
and requires the estimation of the C-polynomial

Direct schemes are much more economical from a computational
viewpoint

Direct STR involves reparameterizing the problem in terms of the
controller parameters

Key to this reparameterization is the predictor form
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Direct STC Predictor Models

Predictor Models

The predictor for y(t+d) derived for minimum-variance control can be
written in terms of polynomials in the backward shift operator q−1 as

y(t+d) =
1
C
(Gy(t)+BFu(t))+Fe(t+d)

or

y(t+d) = S(q−1)yf (t)+R(q−1)uf (t)+F(q−1)e(t+d)

with

yf (t) =
y(t)

C(q−1)
yf (t) =

y(t)
C(q−1)

In this predictor model, the controller polynomials R and S appear directly.
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Direct STC Direct MV-STR and MA-STR

Direct MV-STR

Given n and d, then degR = n+d−1 and degS = n−1. Let 1/C∗(q−1)
be a stable filter
Get estimates R̂ and Ŝ from

y(t+d) = S(q−1)yf (t)+R(q−1)uf (t)+ ε(t+d)

where

yf (t) =
y(t)

C(q−1)
yf (t) =

y(t)
C(q−1)

using RLS with

ϕ
T(t) =

1
C
[u(t) . . .u(t−n−d+1)y(t) . . .y(t−n+1)]

θ
T = [r0 . . .rn+d−1s0 . . .sn−1]

Apply the control law

R̂(q−1)u(t) =−Ŝ(q−1)y(t)
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Direct STC Direct MV-STR and MA-STR

Properties of the Direct MV-STR

Assume direct MV-STR with C∗(q−1) = 1
Property 1: If regression vectors are bounded, then the closed-loop system is
such that

y(t+ τ)y(t) = 0 τ = d, . . .d+n−1

y(t+ τ)u(t) = 0 τ = d, . . .d+n+d−1

Property 2: If the direct MV-STR is applied to

A(q)y(t) = B(q)u(t)+C(q)e(t)

then
y(t+ τ)y(t) = 0 τ = d, . . .

Thus, if the direct MV-STR converges, and if there are sufficiently many
parameters in the controller, then it converges to the minimum-variance
controller.
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Direct STC Direct MV-STR and MA-STR

Some Remarks

The predictor can be written as

y(t+d) = ϕ
T(t)θ̂(t)+ ε(t+d)

and the MVC controller as
ϕ

T(t)θ̂(t) = 0

Remark 1: Note that kϕT(t)θ̂(t) = 0 also gives MV control. Parameters have
one degree of freedom and may thus wander in unison (they lie on a linear
manifold). Unique estimation may be obtained by fixing e.g. r0. Ideally, it
should be equal to b0
Remark 2: For convergence, it is necessary that {u(t)} be persistently
exciting of order ≥ 2n+d. How can we guarantee that in adaptive control?
How can we even guarantee stability? These are non-trivial questions.
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Direct STC Direct MV-STR and MA-STR

Some Remarks

Remark 3: It is easy to add feedforward and command signals

y(t+d) = S(q−1)yf (t)+R(q−1)uf (t)+Sff (q−1)vf (t)+ ε(t+d)

where vf is the filtered measured disturbance.

The controller is then

R̂(q−1)u(t) =−Ŝ(q−1)y(t)− Ŝff (q−1)v(t)

Can also add setpoint tracking.

Remark 4: By replacing d by h > d, we obtain a self-tuning moving-average
controller. By sufficiently large h, no zeros are cancelled, and non-minimum
phase systems can be controlled.
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Direct STC Direct MV-STR and MA-STR

Direct MA-STR

Consider an integrator with time delay τ sampled with sampling period h.

A(q) = q(q−1)

B(q) = (h− τ)(q+
τ

h− τ
)

C(q) = q(q+ c)

Minimum phase if τ < h/2.

With h = 1, at time t = 100, the delay is changed from 0.4 to 0.6.

Simulation with d = 1 (MV-STR) and d = 2 (MA-STR).
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Direct STC Direct MV-STR and MA-STR

Direct MA-STR Example

Figure: Direct MV-STR and MA-STR
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Direct STC Generalized-MV STC

Generalized MV Self-Tuners

Extended Minimum-Variance Controller

Generalized Minimum-Variance Controller
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Direct STC Generalized-MV STC

Extended Minimum-Variance Control

Clarke and Gawthrop, “A Self-Tuning Controller”, IEE Proc. 122:929-934

Known Parameters

Define the auxiliary variable

φ(t), Py(t)−Rq−dyr(t)+Qq−du(t)

where P Q and R are polynomials.

Multiplying by A and assuming that y(t) is governed by an ARMAX process gives

Aφ(t) = P[Bq−du(t)+Ce(t)]−q−dARyr(t)+Qq−dAu(t)

Aφ(t) = q−d[PB+QA]u(t)−q−dARyr(t)+PCe(t)

or

φ(t) =
q−d[PB+QA]

A
u(t)−q−dRyr(t)+

PC
A

e(t)
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Direct STC Generalized-MV STC

Extended Minimum-Variance Control

Consider the Diophantine equation

PC = AF+q−dG

where degF = d−1 and degG = n+np−1 With this, we can write a
predictor for φ(t+d):

φ(t+d) =
BF+QC

C
u(t)+

G
C

y(t)−Ryr(t)+Fe(t+d)

or
φ(t+d) = φ̂(t+d|t)+ ε(t+d)

with
φ̂(t+d|t) = 1

C
[(BF+QC)u(t)+Gy(t)−CRyr(t)]
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Direct STC Generalized-MV STC

Extended Minimum-Variance Control

The error term ε(t+d) = Fe(t+d) is uncorrelated with φ̂(t+d|t). We can thus
proceed as in minimum variance control. The cost function

J = E[φ 2(t+d)]

is minimized by setting φ̂(t+d|t) = 0, i.e.

(BF+QC)u(t)+Gy(t)−CRyr(t) = 0

or

EMVC

u(t) =− G
BF+QC

y(t)+
CR

BF+QC
yr(t)

then
φ(t+d) = Fe(t+d)

The above control law minimizes E[φ 2(t+d)], i.e. is the MV controller for φ .
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Direct STC Generalized-MV STC

Extended Minimum-Variance Control

The closed-loop system is

y(t) =
B
A

q−d
[

CRyr(t)−Gy(t)
BF+QC

]
+

C
A

e(t)

or
C[BP+QA]y(t) = BCRq−dyr + c[BF+QC]e(t)

The closed-loop characteristic polynomial is

C[BP+QA]

EMVC can handle non-minimum phase systems.
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Direct STC Generalized-MV STC

Extended Minimum-Variance Control

The EMVC control law that minimizes

E[φ 2(t+d)] = E[(Py(t+d)−Ryr +Qu(t))2]

also minimizes

E[(Py(t+d)−Ryr)
2 +µ(Qu(t))2] µ =

b0

q0

i.e. this can be interpreted as LQG!
Proof: Consider

I = E[(Py(t+d)−Ryr)
2 +µ(Qu(t))2]

= ((Pŷ(t+d|t)−Ryr)
2 +µ(Qu(t))2 +σ

2
ε

Then
∂ I

∂u(t)
= 2(Pŷ(t+d|t)−Ryr)b0 +2µq0Qu(t) = 0

Implies
Pŷ(t+d|t)+µ

q0

b0
Qu(t)−Ryr = 0

which is the same control as before if µ = b0/q0.
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Direct STC Generalized-MV STC

Extended Minimum-Variance Control

Note that zero steady-state error requires

BR
PB+QA

∣∣∣∣
z=1

= 1

This is satisfied by choosing R = P(1) and Q(1) = 0
With P = R = 1 and Q = λ

J = E[(y(t+d)− yr)
2 +λ

′u2(t)]

With P = R = 1 and Q = λ (1−q−1)

J = E[(y(t+d)− yr)
2 +λ

′
∆u2(t)]

the controller then contains an integrator.
With P = R = 1 and Q = 0

J = E[(y(t+d)− yr)
2]

MVC with setpoint tracking.
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Direct STC Generalized-MV STC

Direct EMV-STC

A direct EMV self-tuner can be implemented by estimating directly the parameters of
the predictor form:

Cφ̂(t+d|t) = (BF+QC)u(t)+Gy(t)−CRyr(t)

Note that this seemingly requires direct estimation of the C polynomial. However, the
predictor

Cφ(t+d) = (BF+QC)u(t)+Gy(t)−CRyr(t)+FCe(t+d)

can be rewritten as

[C+(1−C)]φ(t+d)= (BF+QC)u(t)+Gy(t)−CRyr(t)+FCe(t+d)+(1−C)φ(t+d)

φ(t+d)= (BF+QC)u(t)+Gy(t)−CRyr(t)+Fe(t+d)+(1−C)[φ(t+d)−Fe(t+d)]

Under the previously derived control law, φ(t+d) = Fe(t+d) and the last term of the above equation
vanishes.

Note that it only says that convergence to the correct control law is possible even without knowing C, but it
does not establish that convergence. This will be discussed later.
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Direct STC Generalized-MV STC

Example

y(t) = 2y(t−1)+u(t−2)+2u(t−3)+ e(t) where σ2
e = 0.5

Figure: MVC
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Direct STC Generalized-MV STC

Example

y(t) = 2y(t−1)+u(t−2)+2u(t−3)+ e(t) where σ2
e = 0.5

Figure: EMVC, P = Q = 1, BP+AQ = 2
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Direct STC Generalized-MV STC

Example

y(t) = 2y(t−1)+u(t−2)+2u(t−3)+ e(t) where σ2
e = 0.5

Figure: Adaptive EMVC, P = Q = 1, BP+AQ = 2
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Direct STC Generalized-MV STC

EMVC Example

y(t+1)+ay(t) = bu(t)+ e(t+1)+ ce(t)with a =−0.9, b = 3, and c =−0.3.
The output variance as a function of the input variance is as shown below
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Direct STC Generalized-MV STC

EMVC Example
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