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Stochastic Self-Tuning Controllers

@ Minimum-variance control
e LQG control

@ Predictive control

o Indirect self-tuning controllers
°

Direct self-tuning controllers
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stic Control

Minimum-Variance Control

@ Consider the ARMAX model:

Alg) =  +arg" " +...a,
with B(q) = boq" 4 +biq" 4"+ .. .byy
Clg) = q"+cd"'+...ca

Note that d = degA — degB is the time delay of the process

As usual, e(7) is assumed to be zero-mean white noise
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Stochastic Control Design MVC

Minimum-Variance Control

@ Omitting the argument g in the various polynomials, the output at time
t+d can be written as:

Yi-+d) = Zult+d) + Zelt-+d)

@ The second term in the right-hand side of the above equation consists of
noise terms which at time ¢ are future and unknown, and of some past
and present terms.

@ Because the noise e(¢) is white, those future noise terms cannot be
predicted, i.e. E[e(r+j)]=0  forj> 0.
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Stochastic Control Design MVC

Minimum-Variance Control

We can express the noise filter C/A by its impulse response model, and
separate the unknown future terms from the known past and present ones:

Celtd) = elird)tfielhd= 1)t elit )

future unknown terms
+fa e(t) +fa+1 e‘(t— 1) + -

present and past terms
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St > Control Design MVC

Minimum-Variance Control

This can be rewritten as

C G
~q' " elt41) = Fe(t+1)+ %e@)

i.e. F' and G satisfy the following Diophantine equation with degF =d — 1
and degG =n—1:

Diophantine Equation

q''C(q) = A(9)F(q) + G(q)

With that the predictor becomes

B G
y(t+d) = Jult+d)+ (Fg~ '+ 2qe(t+d)
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Stochastic Control Design MVC

Minimum-Variance Control

Reconstructing the noise sequence e(t) as e(r) = [Ay(¢) — Bu]/C we can write the
d-steps ahead predictor

y(t+d) = gu(wd) + %e(t) +Fe(t+1)

as

y(t+d)= j (t+d)+ %M +Fe(t+1)
o) = 2y + B9 ) pegee

with ¢¢~1C = AF + G this becomes

qG

L)+ L)+ Fe(r+1)

y(t+d) =
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stic Control

Minimum-Variance Control

The predictor can then be written as

y(t+d)=3(t+d|t)+Fe(t+1)

If y, denotes the setpoint, then the minimum variance controller is obtained by

setting
qG

C

gBF

() +—=u()

$(t+dli) =y .

thus giving the controller:

MVC Controller
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Stochastic Control Design MVC

Minimum-Variance Control

Note that when minimum-variance control is used, then

yit+d) = Fe(t+1)
= e(t+d)+fie(t+d—1)+...
+Ha-1e(t+1)

ie.
@ The output is a moving-average process of order d — 1.

@ A characteristic of such a process is that its autocorrelation function
vanishes after d lags.

@ This is an important feature of minimum-variance control, which will

prove very useful when testing the optimality of a stochastic control
scheme.
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stic Control

Minimum-Variance Control

o Using this controller gives for the closed-loop system:
BCq"~'y(t) = BCy, + BCFe(t)

e Multiplying both sides of the Diophantine equation by B(g), we can
interpret the minimum-variance controller as a pole-placement controller.

q°~'C(q)B(q) = A(q)F(q)B(q) + G(q)B(q)

@ The MVC can then be interpreted as a pole placement controller with
BT =B, A,=q¢* 'andAg=C
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Stochastic Control Design MVC

Minimum-Variance Control

@ Like the Dahlin controller, the minimum-variance controller cancels all
process zeros, thus no zeros are allowed outside the unit circle, and
poorly damped zeros will cause ringing.

o If the B-polynomial is factored as

B(q) =B (9)B (q)

with B monic and where all zeros of B*(g) are within the unit circle, and
those of B~ (g) are on or outside the unit circle.
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stic Control

Minimum-Variance Control

The minimum-variance control law is then given by:

G(q)
Bt (q)F(q)

with degF(q) =d+degB™ —1,degG(q) =n—1 and

ult) =~ (1)

4'"'C(q)B*(q) = A(9)F(q) + B (9)G(q)

where B~*(q) = q%28 B~ (¢~") projects the unstable zeros inside the unit
circle.
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Stochastic Control Design MVC

Minimum-Variance Control

@ Major drawbacks of minimum-variance control

e Hyperactivity
e Lack of tuning parameter

@ Modifications

e Moving-average controller
o Input weighting
J=E[y +pu’]

J =E[y* +pAu’]
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Stochastic Control Desig o Average Control

Moving-Average Control

The moving-average controller can be seen as a simplification of the above
scheme, where instead of projecting the unstable zeros inside the unit circle
by using the reciprocal of B before cancelling them, we simply add an
equivalent number of poles at the origin. The Diophantine equation is then

q"~'Clq) = A(q)F(q) + B (q)G(q)

q""'B"(q)C(q) = A(q)B* (9)F(q) + B(9)G(q)

where h = degA —degB* and degF = h— 1.
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Stochastic Control Design Mov rage Control

Moving-Average Control

The control law is

G
() = —=2=3()
The closed-loop system is
CB'F
yt) = me (1)
— q*/H»lFe(l,)

= (1+fAg "+ 4 fiiig " He(r)

The controlled output is then a moving-average of order 7 — 1
o If h = d then minimum-variance control is obtained.

o If 1degA = n, then no zeros are cancelled.
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Stochastic Control Design LQG

Linear Quadratic Control

Theorem (LQG Contro

Consider the process model

A(g)y(r) = B(q)u(?) + C(q)e(t)

and the loss function
J=E{(y(t) —y-())* +pu? (1)}

Assume that there is no common factor to all three polynomials A(q), B(q) and C(q). The optimal control law that minimizes J is given by
R(q)u(t) = =S(q)y(1) + T(q)yr(1)

where T(q) = 19C(q) with ty = P(1)/B(1) and R and S satisfy the Diophantine equation
A(9)R(q) +B()S(q) = P(9)C(q)

where the monic and stable P(q) is obtained from the spectral factorization

P(g)P(q~") = pA(g)A(g~") +B(q)B(g ")

For proof, see Astrom and Wittenmark, Computer Controlled Systems
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St > Control Design LQG

Linear Quadratic Control

@ The LQG controller is obtained as solution of the Diophantine equation

P(q)C(q) = A(q)R(g) + B(9)S(q) ]

@ The closed-loop characteristic polynomial is P(q)C(q) where the stable
polynomial P(g) is obtained from the following spectral factorization:

rP(g)P(q”") = pA(9)A(q™") + B(q)B(g™") )
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Stochastic Control

Linear Quadratic Control

@ If A and B have a stable common factor A;, i.e. A = A1A, and B = B{A;
then P can be written as P = P;A, where P; satisfies

rPy(q)Pi(q ") = pAi(9)Ai(g ") +Bi(9)Bi(g ") ]

and
P=PA,

o The Diophantine equation to be solved then becomes

P1(9)C(q) = A1(9)R(q) +B1(9)S(q) )

@ A, contains the uncontrollable modes
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St > Control Design LQG

Linear Quadratic Control

@ More complicated when some uncontrollable modes are unstable, i.e.
when A3(q) = A3 (9)A; (q)

e With a controller u(¢) = —S(q)/R(q)y(t) the closed-loop input and
output are described by

. R(q)C(q) .
Y0 = X aRig) + @S "
S(q)C(q) )

u(t) = e
= Ak() + BS@
e The output y will be bounded if R(g) contains A, (q)
e The input u will be bounded if s(¢g) contains A, (¢)

@ Because R and § are co-prime, only y will be bounded by making sure
that R(q) contains A, (¢) as a factor. This is the internal model principle,
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Indirect

Indirect MV-STR

Straightforward design
@ Use e.g. AML to obtain estimates A, B and C
@ Compute zeros of C and project unstable ones inside the unit circle
o Factor Bas B=B"B~
o Eliminate common factors between A and B~

@ Solve the Diophantine equation

A A

q'~'C(q)B*(q) =A(q)F(q) + B (9)G(q)

where deg F(q) = d+degB~ —1,degG(g) =n— 1 and

N

B(q)=¢"** B (¢7")
o Apply the minimum variance controller
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Indirect STC

Indirect MV-STR Example

@ Consider the system
y(t+1)+ay(r) = bu(t)+e(t+ 1)+ ce(r)

witha = —0.9, b =3, and ¢ = —0.3.
@ The minimum variance controller is

a—=c¢

u(t) = —=y(1) = —soy(t) = =0.2y(1)

~

o Initial estimates a(0) = ¢(0) =0, »(0) = 1
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Indirect Stochastic STC

Indirect MV-STR Example
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Figure: Indirect MV-STR
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Indirect Stochastic STC

Indirect LQG-STR

Estimate A, B and C using e.g. AML
Compute zeros of C and project unstable ones inside the unit circle

Eliminate common factors between A, Band C

Given p, solve the appropriate spectral factorization problem

°
°

°

@ Find the common factor A, between A and B
°

@ Solve the appropriate Diophantine equation
°

Implement control law with computed R, S, and T

The solution of the spectral factorization problem is the major computation in
the LQG STR. It is crucial to use a method that garantees a stable P.
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Direct STC

Direct MV-STR Example

@ Consider again the system
y(t+1)+ay(t) = bu(t) +e(t+ 1) +ce(r)
witha =—0.9,b =3, and c = —0.3.
@ The minimum variance controller is
u(t) = “=3(1) = —soy(r) = =0.2y(1)
@ Consider a direct STR based on the model

y(t+1) = rou(t) +soy(t)

for which the control law is

with 79 = 1 and 3y is estimated with a simple RLS.
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Direct M V-
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Direct Stochastic Self-Tuning Controllers

@ The previous indirect scheme involves many calculations at each step
and requires the estimation of the C-polynomial

@ Direct schemes are much more economical from a computational
viewpoint

@ Direct STR involves reparameterizing the problem in terms of the
controller parameters

@ Key to this reparameterization is the predictor form
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Direct STC Predictor Models

Predictor Models

The predictor for y(z+d) derived for minimum-variance control can be
1

written in terms of polynomials in the backward shift operator ¢~ as
1
y(t+d)= e (Gy(t) + BFu(r)) + Fe(t+d)
or
(t+d) =g~ )yr(t) +Rgup(t) + Fg ™ e(t+d)
with
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Direct STC Direct MV-STR and MA-STR

Direct MV-STR

e Given nand d, then degR=n+d —1and degS=n—1. Let 1/C* (¢ ")
be a stable filter
o Get estimates R and S from

y(t+d)=S(g~ ")y (1) +R(g s (1) + e(t +d)

where
0= s )= gaty
using RLS with
oT(1) = é[u(t)...u(t—n—cH— Dy(0) -yt —n+1)]

o7 = (70« Tntd—150 -+ Sn—1]

@ Apply the control law
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Direct MV-STR and MA-STR

Properties of the Direct MV-STR

Assume direct MV-STR with C*(¢g~!) = 1
Property 1: If regression vectors are bounded, then the closed-loop system is
such that
yit+1)y(t)=0 t=d,...d+n—1
yt+1)u(t)=0 t=d,...d+n+d—1

Property 2: If the direct MV-STR is applied to

A(q)y(t) = B(q)u(t) + C(g)e(?)
then
yi+1)y(t) =0 1=d,...

Thus, if the direct MV-STR converges, and if there are sufficiently many
parameters in the controller, then it converges to the minimum-variance
controller.
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Direct STC Direct MV-STR and MA-STR

Some Remarks

The predictor can be written as
y(t+d) =T (1)0(t) +£(t+d)

and the MVC controller as
@' (16(1) =0

Remark 1: Note that k¢ ()8 (¢) = 0 also gives MV control. Parameters have
one degree of freedom and may thus wander in unison (they lie on a linear
manifold). Unique estimation may be obtained by fixing e.g. ry. Ideally, it
should be equal to by

Remark 2: For convergence, it is necessary that {u()} be persistently
exciting of order > 2n+ d. How can we guarantee that in adaptive control?
How can we even guarantee stability? These are non-trivial questions.
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Direct MV-STR and MA-STR

Some Remarks

Remark 3: It is easy to add feedforward and command signals
y(t+d)=S(g " )yp(r) +Rg ug(r) +Sgg " )ve(r) + (1 +d)
where vy is the filtered measured disturbance.

The controller is then

N A A

R(g™u(r) = =8(¢~")y(1) = Sp(q " )v(0)
Can also add setpoint tracking.

Remark 4: By replacing d by & > d, we obtain a self-tuning moving-average
controller. By sufficiently large &, no zeros are cancelled, and non-minimum
phase systems can be controlled.
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Direct STC Direct MV-STR and MA-STR

Direct MA-STR

@ Consider an integrator with time delay 7 sampled with sampling period /.

Alg) = q(g—1)
Bla) = (h-7)g+—)
Clg) = qlg+c)

@ Minimum phase if T < h/2.

o With 2 =1, at time t = 100, the delay is changed from 0.4 to 0.6.
e Simulation with d =1 (MV-STR) and d = 2 (MA-STR).
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Direct STC Direct MV-STR and MA-STR

Direct MA-STR Example
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Figure: Direct MV-STR and MA-STR
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Direct STC Generalized-MV STC

Generalized MV Self-Tuners

@ Extended Minimum-Variance Controller

@ Generalized Minimum-Variance Controller

Dumont (UBC EECE)



Direct STC Generalized-MV STC

Extended Minimum-Variance Control

Clarke and Gawthrop, “A Self-Tuning Controller”, IEE Proc. 122:929-934
Known Parameters
Define the auxiliary variable
9(1) £ Py(1) = Rq~y,(1) + Qg u(1)
where P Q and R are polynomials.
Multiplying by A and assuming that y(7) is governed by an ARMAX process gives
A9 (1) = P[Bq™“u(r) + Ce(1)] — g ARy, (1) + Qg *Aul(r)
AQ(1) = g [PB+ QAJu(r) — g ARy, () + PCe(r)

or

—d
0(0) = T80 — g Rynle) + )
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Direct STC Generalized-MV STC

Extended Minimum-Variance Control

Consider the Diophantine equation
PC=AF+q ‘G

where degF' = d — 1 and deg G = n+n, — 1 With this, we can write a
predictor for ¢ (1 +d):

8(1-+d) = 2L LCu() + Zy(e) — Ryyle) + Felr+d)
or
O(t+d) = d(t+d|t) +€(t+d)
with

b(e-+dlr) = L(BF +0C)u(t) +Gy(r) — CRy (1)

Guy Dumont (UBC EECE) EECE 574 - Adaptive Control January 2013
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Direct STC Generalized-MV STC

Extended Minimum-Variance Control

The error term (¢ +d) = Fe(t + d) is uncorrelated with ¢ (z 4 d|t). We can thus
proceed as in minimum variance control. The cost function

J=E[¢*(t+d)]
is minimized by setting ¢ (¢4 d|r) = 0, i.e.
(BF +QC)u(t) + Gy(r) — CRy.(t) =0

or

G CR

() + (®)

)=— .
“0) =310’V BFroc”

then
O(t+d)=Fe(t+d)

The above control law minimizes E[¢? (¢ +d)], i.e. is the MV controller for ¢.
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Direct STC Generalized-MV STC

Extended Minimum-Variance Control

The closed-loop system is

()= ot | T2 Lot

or
C[BP + QA]y(t) = BCRq ™%y, + c[BF + QCle(?)

The closed-loop characteristic polynomial is
C[BP + QA]

EMVC can handle non-minimum phase systems.
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Direct STC Generalized-MV STC

Extended Minimum-Variance Control

The EMVC control law that minimizes
E[¢*(1+d)] = E[(Py(t +d) — Ry, + Qu(1))’]

also minimizes

BB+ =R+ u(Qu()f] =

i.e. this can be interpreted as LQG!
Proof: Consider

I = E[(Py(t+d)—Ry,)* + 1(Qu(r))’]
((P3(t-+d|t) = Ry,)* + (Qu(1)* + ¢

Then o1
—— =2(Py — Ry, 2 =
) (P3(t+d|t) — Ry,)bo + 211 qoQu(t) =0
Implies

P§(t+dlt) +uZ—zQu(t) —Ry, =0

which is the same control as before if 1L = by/qo.
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Direct STC Generalized-MV STC

Extended Minimum-Variance Control

Note that zero steady-state error requires

BR B
PB+QA|_,

This is satisfied by choosing R = P(1) and Q(1) =0
@ WithP=R=1andQ0=41

J = E[(y(t+d) —y,)? + L' (1)]
o WithP=R=1andQ=A(1—¢ ")
J=E[(y(t+d)—y,)* + A" Au*(1)]

the controller then contains an integrator.
@ WithP=R=1and Q=0

7= E[(y(t-+d) ~y,)?]

MVC with setpoint tracking.

Guy Dumont (UBC EECE) EECE 574 - Adaptive Control

January 2013

40/ 46



Direct STC Generalized-MV STC

Direct EMV-STC

A direct EMV self-tuner can be implemented by estimating directly the parameters of
the predictor form:

C§(+dlr) = (BF + QC)u(r) + Gy(r) — CRy, (1)

Note that this seemingly requires direct estimation of the C polynomial. However, the
predictor

Co(t+d) = (BF +QC)u(t) + Gy(t) — CRy,(t) + FCe(t + d)
can be rewritten as
[C+(1-C)])¢(t+d) = (BF+QC)u(t)+Gy(t) — CRy,(t)+ FCe(t+d)+ (1 - C)§(t+d)

O(t+d) = (BF+0C)u(t)+Gy(t) — CRy(t) + Fe(t+d)+ (1 - C)[¢(t+d) — Fe(t+d))

Under the previously derived control law, ¢ (¢ +d) = Fe(t+d) and the last term of the above equation
vanishes.

Note that it only says that convergence to the correct control law is possible even without knowing C, but i
does not establish that convergence. This will be discussed later. %
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Direct STC Generalized-MV STC

Example

y(t) = 2y(t— 1) +u(t —2) + 2u(t — 3) +e(t) where 62 = 0.5

“0 0 4 60 8 10 120 140 160 180 200
time steps

Figure: MVC
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Direct STC Generalized-MV STC

Example

y(t) = 2y(t— 1) +u(t —2) + 2u(t — 3) +e(t) where 62 = 0.5

5 uit)

o 20 40 60 £0 100 120 140 180 130 200
time stcps.

Figure: EMVC,P=0=1,BP+AQ =2
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Direct STC Generalized-MV STC

Example

y(t) = 2y(t— 1) +u(t —2) + 2u(t — 3) +e(t) where 62 = 0.5

5T @ w0 Mt to o
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Figure: Adaptive EMVC,P=0Q=1,BP+AQ =2
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Direct STC Generalized-MV STC

EMVC Example

y(t+1)+ay(t) = bu(t) +e(t+ 1) + ce(t)witha = —0.9, b =3, and ¢ = —0.3.
The output variance as a function of the input variance is as shown below
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Direct STC Generalized-MV §

EMVC Example
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