SOLUTIONS SET 4

Problem 10.1. The disturbance-generating polynomial, I'a(s) corresponds the de-
nominator of the Laplace transform for each signal. This can be computed using a
software package such as MAPLE.

a) The Laplace transform of dg(t) = 3 +t 15 as follows:

3.1 3s+1

L[dg(t)] = Dy(s) = 3 T g2 52

(10.10.1)

Thus, the generating polynomial is I'a(s) = s°.

We have to observe that this result represents the solution for the following
differential equation:

i)

— (10.10.2)

Where the general solution f(t) = C1t+Ca, and the given signal corresponds to

the particular case when the initial conditions are f(0) = 3 and %ﬂ =1.
t=0

b) In this case, the signal is dg(t) = 2cos(0.1t + £}, and its Laplace transform is
as follows:

. 2s
L [dg fﬂ:l] = Dg f:S) = m flﬂ.lD.S)
The generating polynomaial is thus, Tals) = sZ 4+ 0.01.
The corresponding differential equation is as follows:
2
%ﬁ” +0.0LF(£) = 0 (10.10.4)

Where f(t) = Chyeos(0.1t + Cy) is the general solution. The given signal is
a particular member of this solution family, satisfying f(0) = 2cos(<) and
IO = —0.2sin(L).

dt t=0



d) In this case, the Laplace transform of the signal is as follows:

. s+ 0.1
Lldg(t)) = Dy(s) = F—57 008 (10.10.9)
Thus, Ta(s) = &% +0.25 + 0.05.
This tmplies that the associated differential equation s as follows:
2
LHO 10T 1005 5(1) =0 (10.10.10)

Where f(t) = C1e% Y eos(0.2t + C5) and the given signal is the solution that

satisfies f(0) =1 and L : =—0.1.
t=0

Problem 10.3. To solve this problem, we neote that the controller denominator
should contain, as a factor, the generating polynomial s(s® +4). This is necessary
and sufficient for the loop to satisfy the IMP requirement. An appropriate synthesis
technique is the pole assignment method. Recall that (2n—1) is the minimum degree
of Aq when no IMP constraint is tmposed. In our case, we have to satisfy the IMFP
for 8 = 0 {adds one to the minimal degree), and for s = +32 (adds two to the
minimal degree). This leads to a minimal degree for Aqg equal to 2n—1+1-2 = 6.

To simplify the design, we cancel the (stable) poles of the plant uith the con-
troller. Thus, we are led to

3(52+4)(3+fo] +G-,+E:§+(—~.+t§){a + Gs +t’a‘,||fpzs + ;s +po]
A - e —
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(5% + 55+ 16)(s+8)(s+ 10)(s* + 65+ 8)  (10.10.11)

Ag(e)

Simplifying the factor (s® 4 6s + 8) and solving the equation, we obtain

lp = 5H5.5294 pg =160 py =T78.235 py = 32.5204 (10.10.12)
The resulting controller therefore has the following transfer function:

32.52045% 4+ 273 41 5% 4+ 889.6458% + 1585.95 + 1280

C(s) = o
(5) s(s? +4)(s+55.5204)

(10.10.13)



Problem 10.4. For subsequent reference we will deseribe the plant as G,(s) =

—0.Ta =
ES+]__ — E—D.TS{LIO(S)
10.4.1 The general contrel architecture is shown in Figure 10.1. For this case
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Figure 10.1. First and third degree of freedom control using Smith controller.

we will use a Smith Controller, as suggested. We also recall that T,(s) =
7o(8)C(s)/ (14 Gols)C(s)).
This leads to the choice of C'(s) as

- As+1)2
) = S37 (10.10.14)

We can now design the third-degree-of-freedom, i.e., disturbance feedforwand.
To do that we have to build an approrimation to — [Gol(sj]_l. we thus choose

. K(s+1) ]
1(s) = Terl (10.10.15)

Where K = —1 and 3 =0.1. The choice of 3 is arbitrary, prowvided that it is
much smaller than 1, to achieve a good inverse approxvimation.



10.4.2 When we use cascade control (in conjunction with the Smath controller), we
have the control architecture shoumn in Figure 10.2,
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Figure 10.2. Cascade control using Smith controller

Thus, to achieve the desired complementary sensitivity we have an infinite
number of alternatives for Cy(s) and Cy(s). However, we also need to achieve
disturbance rejection similar to that obtained in 10.4.2. Since previously we
used disturbance feedforward, the effect of the disturbance in the loop output
could be made almost negligible. In the alternative cascade architecture, we
can only get near to the above ideal result if we design the inner loop to have
i very high bandwidth, We thus choose

100e—0:28

which leads to

_100(s+ 1)
&

Cy(s) (10.10.17)



Thus

E—D.Ss lﬂ'ﬂE_D'T‘g
_ToEij —
(54 1)(s+ 100)
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— (10.10.18)

From where we can compute C1(s) to achieve the prescribed sensitivity

(s +1)(s+ 100) 4

= Tp(8) = —— (10.10.19)

Ch(s) = 0.04
() s(s+3) s24+3s+4

Note that if had chosen Too(s) of relative degree larger than 1, we u.'oui’d_ have
been unable to achieve the desired sensitivity with a proper controller Cq(s).
We leave the details to the reader.

Problem 10.8. To achicve goals (i) and (it) we need that the IMP be satisfied for
s =0 and s = £0.25. This requires that the controller denominator has a factor
5(s% +0.0625). Using the pole placement synthesis method, we have that the closed

loop polynomial manimum degree shouwld be 6. If we eancel the plant poles with the
zeros of the controller, the Diophantine equation reduces to

s(s2 4+ 00625) (s+Ig)s+ s+ +(—s+4) (s+ 1) (s + ) (pos® + prs+py) =

o

a

L(s) P(s)
(s + 55+ 16)(s+ 8)(s+10) (s + 1)(s +4) (10.10.34)

Semplifying this equation, we obtain
s(s? +0.0625)(s+1g) 4+ (—s + 41 (pas® + prs+po) = (s + 55+ 16)(s + 8)(s+ 10)
(10.10.35)

which leads to the final controller as

100s* + 704.8s% 4 200652 + 26005 + 1280

C(s) = 10.10.36
() ST t 13257 + 0.062552 + 8.2485 ( )




