Chapter 15

SOLUTIONS

Problem 15.1. The general formula to achieve zero steady state error is (see
Lemma 15.2, in the book)

Q(s) = sQ(s) + [Go(0)] 7 (15.15.1)

where sQ(s) is any stable rational function.
When we apply this expression to the particular case we have that G,(0) = 3/5.
Hence

Q(s) = 2 +5Q0s) (15.15.2)

Problem 15.2. We have that To(s) = Q(s)Go(s), thus a possible choice for Q(s)
18

(s +5)(s + 10)
(s+2)+ (15)2

where K is chosen to achieve zero steady state error atw = 0, i.e. to have T,(0) = 1.
This requires K = 13/60.

Q(s) =K (15.15.3)

Problem 15.3. We recall (see Lemma 15.3, in the book) that to achieve zero

steady state errors at w = w, it is necessary that Q(s) satisfies

(s° + wi)Ni(s) + Na(s)
Dq(s)

with Ny (jwo) = Do (jwo)[Go(jwe)] ™
(15.15.4)

Q(s) =

In this case, G,(jw,) = 0.48 — j0.64. A particular and convenient choice of Na(s)
is such that (see equation (15.3.24))

Q(s) = (s* +w2)Q(s) +

= (5" + w)Q(s) + i%{[Go(jwo)]_l} +R{[Go(jwo)] "} (15.15.6)

27 (Goliwo)] ™ = Gol=jwo)] ™) (15.15.5)
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where Q(s) is any stable transfer function.
Given that [G,(50.5)]71 = 0.75 + j, we have that S{[G,(j0.5)]71 = 1, hence

Q(s) = (s +0.25)Q(s) + (25 4+ 0.75) (15.15.7)

Note that Q(+jwe)G(Ljw,) =1, d.e. To(tjw,) = 1.

Problem 15.4. We first recall Lemma 15.6 (in the book), where, after canceling
E(s), we have that all stabilizing controllers for an unstable plant with transfer
function Go(s) = Bo(s)/Ao(s) can be expressed as

B P(s) + Qu(s)As(s)
) = o = Qu(®)Buls)

where P(s)/L(s) is any stabilizing controller, and Q. (s) is any stable transfer func-
tion.

We can easily verify that P(s) = 2, L(s) = 1 stabilizes the plant, thus all
stabilizing controllers for the given unstable plant can be described by

(15.15.8)

C(s) = 2EE=D0u(s) ) 14 5GQu(s) (15.15.9)

1—Qu(s) n 1—Qu(s)

After some algebra we can reduce the above expression to

1
Cs)=(1—-s)+(s+1)V(s with V(s) = ——— 15.15.10
()= (1= 5) + (s + DV (s) O-1—gm  05150)
Hence, (15.15.10) describes all stabilizing controllers for the given plant if V (s) is
any minimum phase transfer function. Note that V(s) can be chosen to be unstable
provided @, (s) is stable.

Problem 15.5. The regulation design specifications imply that Q(s) should be cho-
sen so as that Q(0)G,(0) = T,(0) = 1.

15.5.1 We choose

(s+1)(s+3)

Qs) =K 575 (15.15.11)

To achieve zero steady state in regulation we have to choose K = 8. This
leads to

16(—0.1s + 1)

T =
o(5) 52+ 65+ 16

(15.15.12)



140

Solutions  Chapter 15

15.5.2 The design is tested using the SIMULINK file nmpq.mdl. The results are

shown together with the modified design described in problem 15.5.3.

15.5.3 The difficulty with the choice (15.15.11) is that it leads to a controller C(s)

which cancels the plant poles. This can be checked using (15.15.12) to compute
To(—1) and T,(—3), since they are not equal to 1, hence the poles are effectively
canceled. Thus, these poles appear as poles in the input sensitivity.

It is very important that the reader keeps in mind that cancella-
tion refers to pole-zero cancellation between the controller C(s) and
the plant G,(s). This does not necessarily happen when a pole-zero
cancellation occurs between Q(s) and G,(s).

We recall that a (single) plant pole at s = p is not canceled if and only if this
pole is a zero of the sensitivity, i.e. if T,(p) = 1.

We then have to choose Q(s) such as To(—1) = To(=3) = T,(0) = 1. This
requires that Q(s) has at least three free parameters. Say we choose

(s+1)(s+3)(s®>+as+b)

=K 15.15.13
Q) = K T 6 7 16) (57 5)(5 1 6) ( )
Then, K, a and b are computed to satisfy

Go(-1)Q(=1) =1 (15.15.14)
Go(—3)Q(-3) =1 (15.15.15)
G,(0)Q(0) =1 (15.15.16)

This leads to K = 32.69, a = 5.28 and b = 7.34 and to

2452 34 1

Ty(s) = 65,380+ 0285 £ T34)(s + (s +3) (15.15.17)

(s +5)(s+6)(s%+6s+16)

Figure 15.1 shows the disturbance compensation using the original design (with
plant pole cancellation) (15.15.11) and the modified design (15.15.13). For
this simulation a zero reference was used and the disturbance was generated
by filtering a wide band noise through a low-pass filter with a bandwidth equal
to 4 [rad/s] (as specified),

We can observe that, by avoiding cancellation, better disturbance rejection is

achieved.

To check whether the modified design changes the reference tracking perfor-
mance, another simulation is run using a step reference. The results are shown
in figure 15.2.
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Figure 15.1. Disturbance compensation with (y1,,) and without (yo,) plant can-
cellation
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Figure 15.2. Reference tracking with (y1,) and without (ya,) plant cancellation

We can now observe that the modified design yields a smaller rise time. How-
ever we can also see that larger undershoot and overshoot appear. These neg-
ative features are the result of unavoidable trade-offs (see subsection §8.6.5,
in the book). On the one hand, we have made the closed loop natural modes
faster, this yields increased undershoot (see equation (8.6.28) in the book). On
the other hand, since the plant poles are not canceled, they appear as zeros in
the sensitivity S,(s), one of these zeros is at s = —1. This produces overshoot
that increases as the closed loop (see equation (8.6.27) in the book).

Problem 15.6. For 7 = 0.05 the loop behaves satisfactorily. This is due to the
fact that the modeling error is small, at least in the frequency band of the closed
loop. The loop performance is shown in Figure 15.5.

When 7 = 0.2 the control loop becomes unstable. To stabilize the loop, the
Q controller transfer function is modified by adding a pole at s = —4, this is in
agreement with the specified bandwidth. The gain is also modified such that we can
still ensure T,(0) = 1. The results are shown in Figure 15.4.



