Problem 20.4.
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20.4.1 We first observe that the system poles are the roots of (s%+3s+4)(s%+4s+9)
and that

36
(82 +3s+4)(s2 +4s+9)

det{To(s)} = (20.20.23)

Therefore, there are no zeros.

20.4.2 Since the plant is stable and minimum-phase, an unstable pole-zero cancel-
lation is impossible. Thus the loop is internally stable.

20.4.3 If D,(s) is the vector of output disturbances, then the loop response to these
disturbances is given by

V(s) = Sol(s)D,(s)
= (I—-To(s))D,(s)

s(s+3) —s(s+5)
s24+3s+4 (s243s+4)(s2+4549)
= Do(s)  (2020.24)
s(s+4)
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We next use SIMULINK to simulate the loop with a unit step output disturbance
in channel 1 at time t = 1 and a unit step output disturbance in channel 2 at time
t = 10. The results are shown in Figure 20.2.

As expected, a disturbance in channel I does not produce any effect in the output
of channel 2, since the output sensitivity matriz Sy(s) is upper triangular. However,
for the same structural reason, a disturbance in channel 2 will affect the output of
channel 1. This is evident from Figure 20.2.
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Figure 20.2. Output disturbance response of a triangular 2 = 2 MIMO system

Problem 20.6. We first build the transfer function Tg(s) using the MATLAB
code

>>hii=tf([1 2],[1 4 0]);hi2=tf(0.5,[1 2 0]);
>>h21=h12;h22=t£([2 6],[1 6 8 0] );goc=[h11 h12 ; h21 h22];
>>So=minreal(inv{eye(2,2)+goc));To=minreal (eye(2,2)-50);

20.6.1 We first have to say that there is no way we can know whether an unstable
pole zero cancellation has arisen, since we have been given only the product
Go(8)C(s). We are therefore limited to answer the question whether the com-
plementary sensitivity is stable or unstable. This is easily checked with the
MATLAEB command pole, to compute the complementary sensitivity poles.
These poles are strictly inside the left-half plane, thus establishing that Ty(s)
is stable.

20.6.2 The singular values of Ty(s) can be computed using the MATLAB command
stgma. When these singular values are plotted, they appear as in Figure 20.4.

2 = &
o [=¢] [=:]
T T T

Singular values of T

=
[§*]
T

10° 10 10°
Frequency [radis]

Y
I:::ll!::l
—
=

Figure 20.4. Singular values of the complementary sensitivity.



Problem 21.6.
21.6.1 The diagonalizing precompensator P(s) is computed from

Go(5)P(s) = H(s) <= P(s) = [Gq(s)] 1 H{(s) (21.21.46)

where H(s) is chosen as

= =

(21.21.47)

s+ 1
Then the matriz P(s) can be computed using the following MATLARB code

>> gli=tf(8,[1 6 8]);g12=t£(0.5,[1 8]);

>> g21=tf(-2,[1 4]);g22=t£([6 6],[1 5 6]);

>> Go=[gil gi2;g21 g22];

>> hil=tf(1,[1 11);h12=t£(0,1);h21=h12;h22=t£(1,[1 11);
>>H=[h11 hi12;h21 h22];

>>detGo=minreal (g11*g22-g12+g21);

>>pli=minreal (g22+h1l/detGo) ;pl2=-minreal (g12+h22/detGo);
>>p21=-minreal (g21*hi1/detGo) ;p22=minreal (g11+h22/detGo);
>>P=[pi1 pi2;p21 p22]

where, as usual, the function minreal is used to simplify common terms in
transfer functions.

We next need to design a diagonal PI controller for the precompensated plant

His); we choose the controllers so that the complementary sensitivity in every
channel is given by
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(21.21.48)

This leads to
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The performance is evaluated using SIMULINK, we obtain the step response
gshown in Figure 21.4.
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Figure 21.4. Closed loop step response

A step reference has been applied to each channel. Firstly, a positive unit step
iz applied as reference in channel I, at time t = 1, then a negative unit step
is applied as reference in channel 2, at time t = 5.

21.6.2 When 3 = 2, the system has a NMP zero, which can be computed with the
MATLAE command zero. This is a distributed zero, located at 5 = 49.55.
Thus, if we were to compute P(s) for the same H(s) as in the previous case,
we would obtain an unstable P(s) and a pole zero cancellation would arise.
We thus modify our choice so that the NMP zero is preserved in H(s). The



new choice of H(s) is

—s+49.55
i
H(s)=| T (21.21.50)
‘ . —s+49.55 '
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Note that the NMP zero must be included in both diagonal entries in H(s),
since otherwise, an unstable P(s) will result.

We next choose the PI controllers to achieve a bandwidth of approrimately 3
[rad/s]. This choice allows us to ignore the NMP z2ero in the computation of
the controllers. We thus aim to have a complementary sensitivity (the same
in both channels) approrimately given by
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The performance of the control loop is evaluated via simulation with SIMULINK.
The results are shown in Figure 21.5.
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Figure 21.5. Closed loop step response

A step reference has been applied to each channel Firstly, a positive unit
step is applied as reference in channel 1, at time t = 1, then a negative unit



step is applied as reference in channel 2, at time t = 5. Note that the NMP
behavior present in both channels is barely noticeable, since the NMP zero is
much larger than the closed loop bandwidth (see section §8.6).

Problem 21.7. We observe that the system is stable. However it has a zero in
the right half plane, at 5 = 8.

21.7.1 Assume that we want to use a precompensation matriz M(s) such that
Ggls)M(s) = H(s) (21.21.53)
where H(s) is an arbitrary stable diagonal transfer function matriz. Then

M(s) = [Gol(s)] " H(s) (21.21.54)

We then observe that, unless H(s) is carefully chosen, M(s) will become un-
stable and an unstable pole zero cancellation will arise. A second potential
problem has to do with the possibility that M(s) turns out to be improper.
Both problems will be systematically addressed in Chapter 25, using the idea
of interactors. For the time being we will only tackle these issues in an intu-
iive way.

21.7.2 To avoid the unstable pole zero cancellation, a plant factorization is carried
out, to isolate the NMP zero. This is done as in (21.10.4). Note that Gga(s)
is stable and minimum phase (use the MATLAB command zero on Gga(s) to
verify that this is true). We next choose a precompensator P(s) to diagonalize
Goz(s), i.e.

Go2(s)P(s) = H(s) (21.21.55)

where H(s) is the diagonal matriz given by

1
0
H(s)= 511 ) (21.21.56)
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The matriz P(s) can be computed using the following MATLAR code

>> gli=tf([1 81,01 3 2]);gi12=t£([1 8],[1 6 E]);

>> g21=tf(1,[1 2 11);g22=t£(6,[1 5 61);

>> Go2=[gll g12;g21 g22];

>> hii=tf(1, [1 1]);h12=t£(0,1) ;h21=h12;h22=tf(1,[1 2 1]);
>>H=[h11 h12;h21 h22];



>>detGo2=ninreal (gl1+g22-g12+g21) ;

>>pli=minreal (g22+h11/detGo2) ;pl2=-ninreal (gl12+h22/detGo2) ;
»>>p21=—minreal (g21*h11/detGo2) ;p22=ninreal (gl1+h22/detGo2) ;
>>P=[pil pi2;p21 p22]

The reader might like to verify that if the relative degree of haa(s) is chosen
equal to 1, then the precompensator turns out to be improper.

21.7.3 To design the controller we consider the precompensated plant Gp(s) =
Go1(5)Goz(5)P(s) = Go1(s)H(s). given by

—5+ 8
Gp(s) = |(E TN+ 1 (21.21.57)
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Based on the arqguments presented in Chapter 8, in order that large undershoot
is avoided, me must choose a bandwidth much smaller than 8 in both channels.
We thus choose these bandwidths approrvimately equal to 2; this can be achieved
with a PI controller in channel I and a PID controller in channel 2,

28+ 2 0
— s ‘51 -
C(s) = 4(s 1+ 1)? (21.21.58)
s(s+43)

Note that for the design we have ignored the all pass factor (—s+8)/(s+ 8).
The performance of the loop is evaluated using SIMULINK. The results are
shown in 21.6. A step reference has been applied to each channel. Firstly, a
positive unit step is applied as reference in channel 1, at time t = 1, then a
negative unit step is applied as reference in channel 2, at time t = 5. The
NMP behavior shows, as expected, only in channel 1.
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Figure 21.6. Closed loop step response





